Modelling Cosmic Reionization With Resummed Kinetic Field Theory

Final Results

Katrin Lehle

March 22, 2022

Epoch of Reionization

Figure: Evolution of the universe.

Content

Motivation

Basics

Including Baryons in KFT Computing Power Spectra With RKFT

Model in Static Spacetime

Modelling Reionization Static Model With RKFT Static Analytic Toy Model

Model in Expanding Spacetime Expanding Model With RKFT 21cm Power Spectrum

Open Problems

Conclusion

KFT generating functional

$$Z[\mathbf{J},\mathbf{K}] = e^{i \hat{S}_l} \int \mathrm{d}\Gamma \, \exp\left(i \int \mathrm{d}t \, \mathbf{J}(t) \cdot \mathbf{ar{x}}(t)
ight) \, .$$

Model baryonic matter as an ideal fluid:

$$\begin{aligned} \frac{\partial \rho_m}{\partial t} + \vec{\nabla} (\rho_m \vec{u}) &= 0, \\ \frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \vec{\nabla}) \vec{u} &= -\frac{\vec{\nabla} P}{\rho_m}, \\ \frac{\partial \epsilon}{\partial t} + \vec{\nabla} \cdot (\epsilon \vec{u}) + P \vec{\nabla} \cdot \vec{u} &= 0. \end{aligned}$$

Model baryonic matter as an ideal fluid:

$$\begin{aligned} \frac{\partial \rho_m}{\partial t} + \vec{\nabla} (\rho_m \vec{u}) &= 0, \\ \frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \vec{\nabla}) \vec{u} &= -\frac{\vec{\nabla} P}{\rho_m}, \\ \frac{\partial \epsilon}{\partial t} + \vec{\nabla} \cdot (\epsilon \vec{u}) + P \vec{\nabla} \cdot \vec{u} &= 0. \end{aligned}$$

Close set of equations with equation of state

$$h = \gamma \epsilon = rac{\gamma}{\gamma - 1} P$$

Model baryonic matter as an ideal fluid:

$$\begin{aligned} \frac{\partial \rho_m}{\partial t} + \vec{\nabla} (\rho_m \vec{u}) &= 0, \\ \frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \vec{\nabla}) \vec{u} &= -\frac{\vec{\nabla} P}{\rho_m}, \\ \frac{\partial h}{\partial t} + (\vec{u} \cdot \vec{\nabla}) h + \gamma h \vec{\nabla} \cdot \vec{u} &= 0. \end{aligned}$$

Close set of equations with equation of state

$$h = \gamma \epsilon = rac{\gamma}{\gamma - 1} P$$

▶ q = centre of mass of all microscopic particles

- $\vec{q} \doteq$ centre of mass of all microscopic particles
- $\vec{p} \stackrel{c}{=}$ averaged momentum of the microscopic particles

- $\vec{q} \doteq$ centre of mass of all microscopic particles
- $\vec{p} \stackrel{c}{=}$ averaged momentum of the microscopic particles

Figure: Idea of mesoscopic particles

- ▶ q̃ ≏ centre of mass of all microscopic particles
- $\vec{p} \stackrel{c}{=}$ averaged momentum of the microscopic particles
- ➤ H = enthalpy arises from the microscopic random motion

ightarrow augment phase space coordinates $(ec{q},ec{p},\mathcal{H}).$

Figure: Idea of mesoscopic particles

- $\vec{q} \doteq$ centre of mass of all microscopic particles
- $\vec{p} \stackrel{c}{=}$ averaged momentum of the microscopic particles

ightarrow augment phase space coordinates $(ec{q},ec{p},\mathcal{H})$.

es (The Fourier conjugate variables are (\vec{k}, \vec{l}, y) .)

Smear out the particle properties with smoothing function w

$$ho_m(\vec{q},t) = \sum_{j=1}^N mw(|\vec{q}-\vec{q}_j(t)|),$$

 $ec{\pi}(\vec{q},t) = \sum_{j=1}^N ec{p}_j(t)w(|ec{q}-ec{q}_j(t)|),$
 $h(ec{q},t) = \sum_{j=1}^N \mathcal{H}_j(t)w(|ec{q}-ec{q}_j(t)|).$

Smoothing function

$$w(q) = rac{1}{(2\pi\sigma_w^2)^{3/2}}e^{-q^2/2\sigma_w^2}$$

$$\dot{ec{q}}_j = ec{u}(ec{q}_j(t),t) = rac{ec{p}_j(t)}{m}\,,$$

$$egin{aligned} \dot{ec{q}}_j &= ec{u}(ec{q}_j(t),t) = rac{ec{p}_j(t)}{m}\,, \ \dot{ec{p}}_j(t) &= mrac{\mathrm{d}}{\mathrm{d}t}ec{u}\,(ec{q}_j(t),t) \end{aligned}$$

$$\begin{split} \dot{\vec{q}}_j &= \vec{u}(\vec{q}_j(t), t) = \frac{\vec{p}_j(t)}{m}, \\ \dot{\vec{p}}_j(t) &= m \frac{\mathrm{d}}{\mathrm{d}t} \vec{u} \left(\vec{q}_j(t), t \right) \\ &= -\frac{m}{\rho_m(\vec{q}_j, t)} \frac{\gamma - 1}{\gamma} \sum_{k=1}^N \mathcal{H}_k(t) \vec{\nabla}_{q_j} w \left(|\vec{q}_j(t) - \vec{q}_k(t)| \right), \end{split}$$

$$\begin{split} \dot{\vec{q}}_j &= \vec{u}(\vec{q}_j(t), t) = \frac{\vec{p}_j(t)}{m}, \\ \dot{\vec{p}}_j(t) &= m \frac{\mathrm{d}}{\mathrm{d}t} \vec{u} \left(\vec{q}_j(t), t \right) \\ &= -\frac{m}{\rho_m(\vec{q}_j, t)} \frac{\gamma - 1}{\gamma} \sum_{k=1}^N \mathcal{H}_k(t) \vec{\nabla}_{q_j} w \left(|\vec{q}_j(t) - \vec{q}_k(t)| \right), \\ \dot{\mathcal{H}}_j(t) &= m \frac{\mathrm{d}}{\mathrm{d}t} \tilde{\mathcal{H}} \left(\vec{q}_j(t), t \right) \end{split}$$

$$\begin{split} \dot{\vec{q}}_j &= \vec{u}(\vec{q}_j(t), t) = \frac{\vec{p}_j(t)}{m}, \\ \dot{\vec{p}}_j(t) &= m \frac{\mathrm{d}}{\mathrm{d}t} \vec{u}\left(\vec{q}_j(t), t\right) \\ &= -\frac{m}{\rho_m(\vec{q}_j, t)} \frac{\gamma - 1}{\gamma} \sum_{k=1}^N \mathcal{H}_k(t) \vec{\nabla}_{q_j} w\left(|\vec{q}_j(t) - \vec{q}_k(t)|\right), \\ \dot{\mathcal{H}}_j(t) &= m \frac{\mathrm{d}}{\mathrm{d}t} \tilde{\mathcal{H}}\left(\vec{q}_j(t), t\right) \\ &= -\frac{m}{\rho_m(\vec{q}_j, t)} (\gamma - 1) \sum_{k=1}^N \mathcal{H}_k(t) \frac{\vec{p}_k(t) - \vec{p}_j(t)}{m} \vec{\nabla}_{q_j} w\left(|\vec{q}_j(t) - \vec{q}_k(t)|\right). \end{split}$$

$$\begin{split} \dot{\vec{q}}_j &= \vec{u}(\vec{q}_j(t), t) = \frac{\vec{p}_j(t)}{m} ,\\ \dot{\vec{p}}_j(t) &= m \frac{\mathrm{d}}{\mathrm{d}t} \vec{u} \left(\vec{q}_j(t), t \right) \\ &= -\frac{m}{\bar{\rho}_m} \frac{\gamma - 1}{\gamma} \sum_{k=1}^N \mathcal{H}_k(t) \vec{\nabla}_{q_j} w \left(|\vec{q}_j(t) - \vec{q}_k(t)| \right) ,\\ \dot{\mathcal{H}}_j(t) &= m \frac{\mathrm{d}}{\mathrm{d}t} \tilde{\mathcal{H}} \left(\vec{q}_j(t), t \right) \\ &= -\frac{m}{\bar{\rho}_m} (\gamma - 1) \sum_{k=1}^N \mathcal{H}_k(t) \frac{\vec{p}_k(t) - \vec{p}_j(t)}{m} \vec{\nabla}_{q_j} w \left(|\vec{q}_j(t) - \vec{q}_k(t)| \right) . \end{split}$$

Setting up the Action S_I

The interacting part of the action is given by

 $S_I = \mathcal{E}_I \cdot \chi$

Setting up the Action S_l

The interacting part of the action is given by

$$S_{I} = \mathcal{E}_{I} \cdot \chi = \int \mathrm{d}t \, (\vec{\mathcal{E}}_{I,q}(t) \cdot \vec{\chi}_{q_{j}}(t) + \vec{\mathcal{E}}_{I,p}(t) \cdot \vec{\chi}_{p_{j}}(t) + \mathcal{E}_{I,\mathcal{H}}(t)\chi_{\mathcal{H}_{j}})(t)$$

Setting up the Action S_l

The interacting part of the action is given by

$$\begin{split} S_{I} &= \mathcal{E}_{I} \cdot \chi = \int \mathrm{d}t \, (\vec{\mathcal{E}}_{I,q}(t) \cdot \vec{\chi}_{q_{j}}(t) + \vec{\mathcal{E}}_{I,p}(t) \cdot \vec{\chi}_{p_{j}}(t) + \mathcal{E}_{I,\mathcal{H}}(t)\chi_{\mathcal{H}_{j}})(t) \\ &= -\sum_{j=1}^{N} \int \mathrm{d}t \, (\dot{\vec{p}}_{j}(t) \cdot \vec{\chi}_{p_{j}}(t) + \dot{\mathcal{H}}_{j}(t)\chi_{\mathcal{H}_{j}})(t) \,. \end{split}$$

Introducing Collective Fields

For computing power spectra reformulate action in terms of collective fields

$$\begin{split} \Phi_f(\vec{x},t) &= \sum_{j=1}^N \delta_D \left(\vec{q} - \vec{q}_j(t) \right) \delta_D \left(\vec{p} - \vec{p}_j(t) \right) \delta_D \left(\mathcal{H} - \mathcal{H}_j(t) \right) \,, \\ \Phi_{B_\rho}(\vec{x},t) &= \sum_{j=1}^N \vec{\chi}_{\rho_j}(t) \cdot \vec{\nabla}_q \delta_D \left(\vec{q} - \vec{q}_j(t) \right) \delta_D \left(\vec{p} - \vec{p}_j(t) \right) \delta_D \left(\mathcal{H} - \mathcal{H}_j(t) \right) \,, \\ \vec{\Phi}_{B_\mathcal{H}}(\vec{x},t) &= \sum_{j=1}^N \chi_{\mathcal{H}_j}(t) \vec{\nabla}_q \delta_D \left(\vec{q} - \vec{q}_j(t) \right) \delta_D \left(\vec{p} - \vec{p}_j(t) \right) \delta_D \left(\mathcal{H} - \mathcal{H}_j(t) \right) \,. \end{split}$$

Action S_l in Terms of Collective Fields

In terms of collective fields the action takes the form

$$\begin{split} S_{\psi,I}[\psi] &= \int \mathrm{d} 1 \int \mathrm{d} 2 \left(\Phi_f(-1) \sigma_{fB_\rho}(1,-2) \Phi_{B_\rho}(2) \right. \\ &\left. + \Phi_f(-1) \vec{\sigma}_{fB_{\mathcal{H}}}(1,-2) \cdot \vec{\Phi}_{B_{\mathcal{H}}}(2) \right) \,, \end{split}$$

Action S_l in Terms of Collective Fields

In terms of collective fields the action takes the form

$$\begin{split} S_{\psi,I}[\psi] &= \int \mathrm{d} 1 \int \mathrm{d} 2 \left(\Phi_f(-1) \sigma_{fB_\rho}(1,-2) \Phi_{B_\rho}(2) \right. \\ &\left. + \Phi_f(-1) \vec{\sigma}_{fB_{\mathcal{H}}}(1,-2) \cdot \vec{\Phi}_{B_{\mathcal{H}}}(2) \right) \,, \end{split}$$

defining the interaction matrix elements

$$\begin{split} \sigma_{f\mathcal{B}_{\rho}}(1,2) &= -\frac{m}{\bar{\rho}_{m}} \frac{\gamma - 1}{\gamma} w(k_{1}) i \partial_{y_{1}} \\ &\times (2\pi)^{11} \delta_{D}(\vec{k}_{1} + \vec{k}_{2}) \delta_{D}(\vec{l}_{1}) \delta_{D}(\vec{l}_{2}) \delta_{D}(y_{1}) \delta_{D}(y_{2}) \delta_{D}(t_{1} - t_{2}) \,, \\ \vec{\sigma}_{f\mathcal{B}_{\mathcal{H}}}(1,2) &= -\frac{1}{\bar{\rho}_{m}} (\gamma - 1) w(k_{1}) i \partial_{y_{1}} (i \vec{\partial}_{l_{1}} - i \vec{\partial}_{l_{2}}) \\ &\times (2\pi)^{11} \delta_{D}(\vec{k}_{1} + \vec{k}_{2}) \delta_{D}(\vec{l}_{1}) \delta_{D}(\vec{l}_{2}) \delta_{D}(y_{1}) \delta_{D}(y_{2}) \delta_{D}(t_{1} - t_{2}) \,. \end{split}$$

Action S_l in Terms of Collective Fields

In terms of collective fields the action takes the form

$$\begin{split} S_{\psi,I}[\psi] &= \int \mathrm{d} 1 \int \mathrm{d} 2 \left(\Phi_f(-1) \sigma_{fB_\rho}(1,-2) \Phi_{B_\rho}(2) \right. \\ &\left. + \Phi_f(-1) \vec{\sigma}_{fB_{\mathcal{H}}}(1,-2) \cdot \vec{\Phi}_{B_{\mathcal{H}}}(2) \right) \,, \end{split}$$

defining the interaction matrix elements

$$\begin{split} \sigma_{f\mathcal{B}_{\rho}}(1,2) &= -\frac{m}{\bar{\rho}_{m}} \frac{\gamma - 1}{\gamma} w(k_{1}) i \partial_{y_{1}} \\ &\times (2\pi)^{11} \delta_{D}(\vec{k}_{1} + \vec{k}_{2}) \delta_{D}(\vec{l}_{1}) \delta_{D}(\vec{l}_{2}) \delta_{D}(y_{1}) \delta_{D}(y_{2}) \delta_{D}(t_{1} - t_{2}) \,, \\ \vec{\sigma}_{f\mathcal{B}_{\mathcal{H}}}(1,2) &= -\frac{1}{\bar{\rho}_{m}} (\gamma - 1) w(k_{1}) i \partial_{y_{1}} (i \vec{\partial}_{l_{1}} - i \vec{\partial}_{l_{2}}) \\ &\times (2\pi)^{11} \delta_{D}(\vec{k}_{1} + \vec{k}_{2}) \delta_{D}(\vec{l}_{1}) \delta_{D}(\vec{l}_{2}) \delta_{D}(y_{1}) \delta_{D}(y_{2}) \delta_{D}(t_{1} - t_{2}) \,. \end{split}$$

To simplify the formalism we introduce the dressed response field

$$\Phi_{\mathcal{F}} = \sigma_{fB_{\rho}} \cdot \Phi_{B_{\rho}} + \vec{\sigma}_{fB_{\mathcal{H}}} \cdot \vec{\Phi}_{B_{\mathcal{H}}} \,.$$

Outline

Motivation

Basics Including Baryons in KFT Computing Power Spectra With RKFT

Model in Static Spacetime

Modelling Reionization Static Model With RKFT Static Analytic Toy Model

Model in Expanding Spacetime

Expanding Model With RKFT 21cm Power Spectrum

Open Problems

Conclusion

Power spectrum is defined via

$$(2\pi)^3 \delta_D(\vec{k_1}+\vec{k_2}) P_{\delta}(k_1) = \langle \delta(1)\delta(2) \rangle_c \eqqcolon G_{\delta\delta}(1,2).$$

Power spectrum is defined via

$$(2\pi)^3 \delta_D(ec{k_1}+ec{k_2}) \mathcal{P}_\delta(k_1) = \langle \delta(1) \delta(2)
angle_c = rac{1}{ar{
ho}^2} \, \mathcal{G}_{
ho
ho}(1,2) \, .$$

Power spectrum is defined via

$$(2\pi)^3 \delta_D(ec{k}_1+ec{k}_2) P_\delta(k_1) = \langle \delta(1) \delta(2)
angle_c = rac{1}{ar{
ho}^2} G_{
ho
ho}(1,2) \,.$$

What we can compute with KFT is $G_{ff} = \langle \Phi_f(1) \Phi_f(2) \rangle_c$.

Power spectrum is defined via

$$(2\pi)^3 \delta_D(ec{k_1}+ec{k_2}) P_\delta(k_1) = \langle \delta(1) \delta(2)
angle_c = rac{1}{ar{
ho}^2} \, G_{
ho
ho}(1,2) \, .$$

What we can compute with KFT is $G_{ff} = \langle \Phi_f(1) \Phi_f(2) \rangle_c$. The density correlation can be extracted

Power spectrum is defined via

$$(2\pi)^3 \delta_D(ec{k_1}+ec{k_2}) P_\delta(k_1) = \langle \delta(1) \delta(2)
angle_c = rac{1}{ar{
ho}^2} G_{
ho
ho}(1,2) \, .$$

What we can compute with KFT is $G_{ff} = \langle \Phi_f(1)\Phi_f(2) \rangle_c$. The density correlation can be extracted

$$egin{aligned} \mathsf{G}_{
ho
ho}(ec{k}_1,t_1,ec{k}_2,t_2) &= \left.\mathsf{G}_{ extsff}(1,2)
ight|_{\substack{ec{l}_1=ec{l}_2=0\ y_1=y_2=0}} \end{aligned}$$

Thus, we need to compute G_{ff} :

Power spectrum is defined via

$$(2\pi)^3 \delta_D(ec{k_1}+ec{k_2}) {\cal P}_\delta(k_1) = \langle \delta(1) \delta(2)
angle_c = rac{1}{ar{
ho}^2} {\cal G}_{
ho
ho}(1,2) \, .$$

What we can compute with KFT is $G_{ff} = \langle \Phi_f(1)\Phi_f(2) \rangle_c$. The density correlation can be extracted

$$\left. \mathcal{G}_{
ho
ho}(ec{k_1},t_1,ec{k_2},t_2) = \left. \mathcal{G}_{
m ff}(1,2)
ight|_{\substack{ec{h}_1=ec{h}_2=0\ y_1=y_2=0}}$$

Thus, we need to compute G_{ff} :

$$G_{ff}(1,2) = \Delta_{ff}(1,2) + \text{vertex terms}.$$

Here, Δ_{ff} is the *statistical propagator*.

Introducing RKFT

Exact reformulation of KFT path integral

$$Z = \int \mathrm{d}\Gamma \int_{i} \mathcal{D}\psi \, e^{iS_{\psi,0}[\psi] + i\Phi_{f} \cdot \Phi_{\mathcal{F}}[\psi]}$$

Introducing RKFT

Exact reformulation of KFT path integral

$$\begin{split} Z &= \int \mathrm{d}\Gamma \int_{i} \mathcal{D}\psi \, e^{iS_{\psi,0}[\psi] + i\Phi_{f} \cdot \Phi_{\mathcal{F}}[\psi]} \\ &= \int \mathrm{d}\Gamma \int_{i} \mathcal{D}\psi \int \mathcal{D}f \, e^{iS_{\psi,0}[\psi] + if \cdot \Phi_{\mathcal{F}}[\psi]} \delta_{D} \left[f - \Phi_{f}[\psi] \right] \end{split}$$
Introducing RKFT

Exact reformulation of KFT path integral

$$\begin{split} Z &= \int \mathrm{d}\Gamma \int_{i} \mathcal{D}\psi \ e^{iS_{\psi,0}[\psi] + i\Phi_{f} \cdot \Phi_{\mathcal{F}}[\psi]} \\ &= \int \mathrm{d}\Gamma \int_{i} \mathcal{D}\psi \int \mathcal{D}f \ e^{iS_{\psi,0}[\psi] + if \cdot \Phi_{\mathcal{F}}[\psi]} \delta_{D} \left[f - \Phi_{f}[\psi] \right] \\ &= \int \mathrm{d}\Gamma \int_{i} \mathcal{D}\psi \int \mathcal{D}f \int \mathcal{D}\beta \ e^{iS_{\psi,0}[\psi] + if \cdot \Phi_{\mathcal{F}}[\psi] - i\beta \cdot (f - \Phi_{f}[\psi])} \end{split}$$

Introducing RKFT

Exact reformulation of KFT path integral

$$\begin{split} Z &= \int \mathrm{d}\Gamma \int_{i} \mathcal{D}\psi \ e^{iS_{\psi,0}[\psi] + i\Phi_{f} \cdot \Phi_{\mathcal{F}}[\psi]} \\ &= \int \mathrm{d}\Gamma \int_{i} \mathcal{D}\psi \int \mathcal{D}f \ e^{iS_{\psi,0}[\psi] + if \cdot \Phi_{\mathcal{F}}[\psi]} \delta_{D} \left[f - \Phi_{f}[\psi] \right] \\ &= \int \mathrm{d}\Gamma \int_{i} \mathcal{D}\psi \int \mathcal{D}f \int \mathcal{D}\beta \ e^{iS_{\psi,0}[\psi] + if \cdot \Phi_{\mathcal{F}}[\psi] - i\beta \cdot (f - \Phi_{f}[\psi])} \\ &= \int \mathcal{D}\phi \ e^{-i\beta \cdot f} Z_{\tilde{\Phi},0}[\tilde{\phi}] \,. \end{split}$$

Introducing RKFT

Exact reformulation of KFT path integral

$$\begin{split} Z &= \int \mathrm{d}\Gamma \int_{i} \mathcal{D}\psi \ e^{iS_{\psi,0}[\psi] + i\Phi_{f} \cdot \Phi_{\mathcal{F}}[\psi]} \\ &= \int \mathrm{d}\Gamma \int_{i} \mathcal{D}\psi \int \mathcal{D}f \ e^{iS_{\psi,0}[\psi] + if \cdot \Phi_{\mathcal{F}}[\psi]} \delta_{D} \left[f - \Phi_{f}[\psi] \right] \\ &= \int \mathrm{d}\Gamma \int_{i} \mathcal{D}\psi \int \mathcal{D}f \int \mathcal{D}\beta \ e^{iS_{\psi,0}[\psi] + if \cdot \Phi_{\mathcal{F}}[\psi] - i\beta \cdot (f - \Phi_{f}[\psi])} \\ &= \int \mathcal{D}\phi \ e^{-i\beta \cdot f} Z_{\tilde{\Phi},0}[\tilde{\phi}] \,. \end{split}$$

We receive the macroscopic action

$$S_{\phi}[\phi] \coloneqq -f \cdot \beta - iW_{\tilde{\Phi},0}[\tilde{\phi}],$$

with $\phi = (f, \beta)$.

Macroscopic Perturbation Theory

Set up a new perturbative approach to KFT following the standard procedure in quantum and statistical field theory

$$\begin{split} iS_{\phi}[\phi] &= iS_{\Delta}[\phi] + iS_{\nu}[\phi] \\ &\coloneqq -\frac{1}{2} \int \mathrm{d}1 \int \mathrm{d}2 \,\phi(-1)\Delta^{-1}(1,2)\phi(-2) \\ &+ \sum_{\substack{n_{f},n_{\beta}=0\\n_{f}+n_{\beta}\neq 2}} \frac{1}{n_{f}!n_{\beta}!} \prod_{u=1}^{n_{\beta}} \left(\int \mathrm{d}u \,\beta(-u) \right) \prod_{r=1}^{n_{f}} \left(\int \mathrm{d}r' \,f(-r') \right) \nu_{\beta\dots\beta f\dots f}(1,\dots,n_{f}') \,. \end{split}$$

Macroscopic Perturbation Theory

Set up a new perturbative approach to KFT following the standard procedure in quantum and statistical field theory

$$\begin{split} iS_{\phi}[\phi] &= iS_{\Delta}[\phi] + iS_{\nu}[\phi] \\ &\coloneqq -\frac{1}{2} \int \mathrm{d}1 \int \mathrm{d}2 \,\phi(-1)\Delta^{-1}(1,2)\phi(-2) \\ &+ \sum_{\substack{n_{f},n_{\beta}=0\\n_{f}+n_{\beta}\neq 2}} \frac{1}{n_{f}!n_{\beta}!} \prod_{u=1}^{n_{\beta}} \left(\int \mathrm{d}u \,\beta(-u) \right) \prod_{r=1}^{n_{f}} \left(\int \mathrm{d}r' \,f(-r') \right) \nu_{\beta\dots\beta f\dots f}(1,\dots,n_{f}') \,. \end{split}$$

Here, Δ^{-1} is the inverse propagator and $\nu_{\beta...\beta f...f}(1,...,n'_f)$ the vertex term.

Macroscopic Propagator

Expressions can be found by plugging the functional Taylor series of the macroscopic Schwinger functional $W_{\tilde{\Phi},0}[\tilde{\phi}] = \ln Z_{\tilde{\Phi},0}[\tilde{\phi}]$ into the macroscopic action

$$\Delta(1,2) = \begin{pmatrix} \Delta_{ff} & \Delta_{f\beta} \\ \Delta_{\beta f} & \Delta_{\beta\beta} \end{pmatrix} (1,2) = \begin{pmatrix} \Delta_R \cdot G_{ff}^{(0)} \cdot \Delta_A & -i\Delta_R \\ -i\Delta_A & 0 \end{pmatrix} (1,2) ,$$
$$\nu_{\beta\dots\beta f\dots f}(1,\dots,n_{\beta},1',\dots,n'_f) = i^{n_f+n_\beta} G_{f\dots f\mathcal{F}\dots\mathcal{F}}^{(0)}(1,\dots,n_{\beta},1',\dots,n'_f) .$$

Macroscopic Propagator

Expressions can be found by plugging the functional Taylor series of the macroscopic Schwinger functional $W_{\tilde{\Phi},0}[\tilde{\phi}] = \ln Z_{\tilde{\Phi},0}[\tilde{\phi}]$ into the macroscopic action

$$\Delta(1,2) = egin{pmatrix} \Delta_{ff} & \Delta_{feta} \ \Delta_{eta f} & \Delta_{eta eta} \end{pmatrix} (1,2) = egin{pmatrix} \Delta_R & G_{ff}^{(0)} \cdot \Delta_A & -i\Delta_R \ -i\Delta_A & 0 \end{pmatrix} (1,2)\,,$$

$$\nu_{\beta\ldots\beta f\ldots f}(1,\ldots,n_{\beta},1',\ldots,n'_{f})=i^{n_{f}+n_{\beta}}G^{(0)}_{f\ldots f\mathcal{F}\ldots\mathcal{F}}(1,\ldots,n_{\beta},1',\ldots,n'_{f}).$$

With the definition of the retarded propagator

$$\Delta_R(1,2) = \Delta_A(2,1) := (\mathcal{I} - iG_{f\mathcal{F}}^{(0)})^{-1}(1,2).$$

Here, ${\mathcal I}$ symbolises the identity two-point function,

$$\mathcal{I}(1,2) := (2\pi)^3 \delta_D(ec{k_1}+ec{k_2}) (2\pi)^3 \delta_D(ec{l_1}+ec{l_2}) \delta_D(t_1-t_2)$$

Intermezzo

Expressions for the cumulants or connected correlation functions

$$\begin{split} G_{f\ldots B}^{(0)}(1,\ldots,n_{f},1',\ldots,n'_{B}) &= \frac{\delta}{i\delta H_{f}(1)}\cdots\frac{\delta}{i\delta H_{f}(n_{f})}\frac{\delta}{i\delta H_{B}(1')}\cdots\frac{\delta}{i\delta H_{B}(n'_{B})}W_{\Phi,0}[H]\Big|_{H=0},\\ G_{f\ldots \mathcal{F}}^{(0)}(1,\ldots,n_{f},1',\ldots,n'_{\mathcal{F}}) &= \frac{\delta}{i\delta H_{f}(1)}\cdots\frac{\delta}{i\delta H_{f}(n_{f})}\frac{\delta}{i\delta H_{\mathcal{F}}(1')}\cdots\frac{\delta}{i\delta H_{\mathcal{F}}(n'_{\mathcal{F}})}W_{\Phi,0}[\tilde{H}]\Big|_{\tilde{H}=0}\\ &= \prod_{r=1}^{n_{\mathcal{F}}}\left(\int \mathrm{d}\bar{r}\,\sigma_{fB}(r',-\bar{r})\right)\,G_{f\ldots B}^{(0)}(1,\ldots,n_{f},\bar{1},\ldots,\bar{n}_{\mathcal{F}})\,. \end{split}$$

Intermezzo

Expressions for the cumulants or connected correlation functions

$$\begin{split} G_{f\ldots B}^{(0)}(1,\ldots,n_{f},1',\ldots,n'_{B}) &= \frac{\delta}{i\delta H_{f}(1)}\cdots\frac{\delta}{i\delta H_{f}(n_{f})}\frac{\delta}{i\delta H_{B}(1')}\cdots\frac{\delta}{i\delta H_{B}(n'_{B})}W_{\Phi,0}[H]\Big|_{H=0},\\ G_{f\ldots \mathcal{F}}^{(0)}(1,\ldots,n_{f},1',\ldots,n'_{\mathcal{F}}) &= \frac{\delta}{i\delta H_{f}(1)}\cdots\frac{\delta}{i\delta H_{f}(n_{f})}\frac{\delta}{i\delta H_{\mathcal{F}}(1')}\cdots\frac{\delta}{i\delta H_{\mathcal{F}}(n'_{\mathcal{F}})}W_{\Phi,0}[\tilde{H}]\Big|_{\tilde{H}=0} \\ &= \prod_{r=1}^{n_{\mathcal{F}}}\left(\int \mathrm{d}\bar{r}\,\sigma_{fB}(r',-\bar{r})\right)\,G_{f\ldots B}^{(0)}(1,\ldots,n_{f},\bar{1},\ldots,\bar{n}_{\mathcal{F}})\,. \end{split}$$

For actually computing them we need to choose a specific system, i.e. we need equations of motion for $\dot{\vec{q}}, \dot{\vec{p}}, and \dot{\mathcal{H}}$.

Outline

Motivation

Basics

Including Baryons in KFT Computing Power Spectra With RKFT

Model in Static Spacetime

Modelling Reionization

Static Model With RKFT Static Analytic Toy Model

Model in Expanding Spacetime

Expanding Model With RKFT 21cm Power Spectrum

Open Problems

Conclusion

Modelling Reionization

Photons cannot be directly modelled in KFT
 Model the effects of ionising photons

Modelling Reionization

Photons cannot be directly modelled in KFT
 Model the effects of ionising photons

Modelling Reionization

Photons cannot be directly modelled in KFT
 Model the effects of ionising photons

Assumptions:

- only hydrogen
- only ionisation, no recombination
- only ionisation from the ground state

Add source term to hydrodynamical equations

$$\begin{aligned} \frac{\partial \rho_m}{\partial t} + \vec{\nabla}(\rho_m \vec{u}) &= 0, \\ \frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \vec{\nabla})\vec{u} &= -\frac{\vec{\nabla}P}{\rho_m}, \\ \frac{\partial h}{\partial t} + (\vec{u} \cdot \vec{\nabla})h + \gamma h \vec{\nabla} \cdot \vec{u} &= \text{sources} =: \frac{\mathrm{d}Q_V}{\mathrm{d}t}, \end{aligned}$$

Add source term to hydrodynamical equations

$$\begin{aligned} \frac{\partial \rho_m}{\partial t} + \vec{\nabla} (\rho_m \vec{u}) &= 0, \\ \frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \vec{\nabla}) \vec{u} &= -\frac{\vec{\nabla} P}{\rho_m}, \\ \frac{\partial h}{\partial t} + (\vec{u} \cdot \vec{\nabla}) h + \gamma h \vec{\nabla} \cdot \vec{u} = \text{sources} =: \frac{\mathrm{d} Q_V}{\mathrm{d} t}, \end{aligned}$$

$$\frac{\mathrm{d}Q_V}{\mathrm{d}t} = \rho_{H_l} \int_{\nu_L}^{\infty} \mathrm{d}\nu \left(h\nu - h\nu_L\right) \frac{J_\nu}{h\nu} \sigma_\nu \eqqcolon \rho_{H_l} S \,.$$

Add source term to hydrodynamical equations

$$\begin{aligned} \frac{\partial \rho_m}{\partial t} + \vec{\nabla} (\rho_m \vec{u}) &= 0, \\ \frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \vec{\nabla}) \vec{u} &= -\frac{\vec{\nabla} P}{\rho_m}, \\ \frac{\partial h}{\partial t} + (\vec{u} \cdot \vec{\nabla}) h + \gamma h \vec{\nabla} \cdot \vec{u} = \text{sources} =: \frac{\mathrm{d} Q_V}{\mathrm{d} t}, \end{aligned}$$

$$\frac{\mathrm{d}Q_V}{\mathrm{d}t} = \rho_{H_l} \int_{\nu_L}^{\infty} \mathrm{d}\nu \left(h\nu - h\nu_L\right) \frac{J_\nu}{h\nu} \sigma_\nu \eqqcolon x_{H_l} \rho_H S \,.$$

Add source term to hydrodynamical equations

$$\begin{aligned} \frac{\partial \rho_m}{\partial t} + \vec{\nabla} (\rho_m \vec{u}) &= 0, \\ \frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \vec{\nabla}) \vec{u} &= -\frac{\vec{\nabla} P}{\rho_m}, \\ \frac{\partial h}{\partial t} + (\vec{u} \cdot \vec{\nabla}) h + \gamma h \vec{\nabla} \cdot \vec{u} = \text{sources} =: \frac{\mathrm{d} Q_V}{\mathrm{d} t}, \end{aligned}$$

$$\frac{\mathrm{d}Q_V}{\mathrm{d}t} = \rho_{H_I} \int_{\nu_L}^{\infty} \mathrm{d}\nu \left(h\nu - h\nu_L\right) \frac{J_{\nu}}{h\nu} \sigma_{\nu} \eqqcolon (1-x) \rho_H S$$

Add source term to hydrodynamical equations

$$\begin{aligned} \frac{\partial \rho_m}{\partial t} + \vec{\nabla} (\rho_m \vec{u}) &= 0, \\ \frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \vec{\nabla}) \vec{u} &= -\frac{\vec{\nabla} P}{\rho_m}, \\ \frac{\partial h}{\partial t} + (\vec{u} \cdot \vec{\nabla}) h + \gamma h \vec{\nabla} \cdot \vec{u} = \text{sources} =: \frac{\mathrm{d} Q_V}{\mathrm{d} t}, \end{aligned}$$

$$\frac{\mathrm{d}Q_V}{\mathrm{d}t} = \rho_{H_I} \int_{\nu_L}^{\infty} \mathrm{d}\nu \left(h\nu - h\nu_L\right) \frac{J_{\nu}}{h\nu} \sigma_{\nu} \eqqcolon (1-x) N\rho S$$

New Equations of Motion

Again, smooth out the single particle contribution

$$egin{aligned} &rac{\mathrm{d} Q_V}{\mathrm{d} t}(ec{q},t) = \sum_{j=1}^N rac{\mathrm{d} Q_j}{\mathrm{d} t}(T_j,T_\star(t),
ho_j)\,w(|ec{q}-ec{q}_j(t)|) \ & =:\sum_{j=1}^N (1-x_j)S(t)N\,w(|ec{q}-ec{q}_j(t)|)\,. \end{aligned}$$

New Equations of Motion

Again, smooth out the single particle contribution

$$egin{aligned} &rac{\mathrm{d} \mathcal{Q}_V}{\mathrm{d} t}(ec{q},t) = \sum_{j=1}^N rac{\mathrm{d} \mathcal{Q}_j}{\mathrm{d} t}(T_j,T_\star(t),
ho_j)\,w(|ec{q}-ec{q}_j(t)|), \ & =:\sum_{j=1}^N (1-x_j)S(t)N\,w(|ec{q}-ec{q}_j(t)|)\,. \end{aligned}$$

New equation of motion for the enthalpy

$$\begin{split} \dot{\mathcal{H}}_{j}(t) &= -\frac{m}{\bar{\rho}_{m}}(\gamma - 1)\sum_{k=1}^{N}\mathcal{H}_{k}(t)\frac{\vec{p}_{k}(t) - \vec{p}_{j}(t)}{m}\vec{\nabla}_{q_{j}}w\left(|\vec{q}_{j}(t) - \vec{q}_{k}(t)|\right) \\ &+ \frac{m}{\bar{\rho}_{m}}\gamma\sum_{k=1}^{N}\frac{\mathrm{d}Q_{k}}{\mathrm{d}t}w\left(|\vec{q}_{j}(t) - \vec{q}_{k}(t)|\right) \\ &=: \quad \dot{\mathcal{H}}_{old,j} + \dot{\mathcal{H}}_{source,j} \,. \end{split}$$

New Interaction Term

The new equation of motion adds a new term to the interacting part of the action $% \left({{{\bf{n}}_{\rm{c}}}} \right)$

$$\begin{split} S_{I} &= -\int \mathrm{d}t \left(\dot{\vec{p}}_{j} \cdot \vec{\chi}_{p_{j}} + \dot{\mathcal{H}}_{j} \cdot \chi_{\mathcal{H}_{j}} \right) \\ &= -\int \mathrm{d}t \left(\dot{\vec{p}}_{j} \cdot \vec{\chi}_{p_{j}} + \dot{\mathcal{H}}_{old,j} \cdot \chi_{\mathcal{H}_{j}} + \dot{\mathcal{H}}_{source,j} \cdot \chi_{\mathcal{H}_{j}} \right) \\ &= S_{I_{old}} + S_{I_{source}} \,. \end{split}$$

Defining an heating operator

$$rac{\mathrm{d}\hat{Q}_k}{\mathrm{d}t} = (1-\hat{x}_k)S(t)N\,.$$

Defining an heating operator

$$rac{\mathrm{d}\hat{Q}_k}{\mathrm{d}t} = (1-\hat{x}_k)S(t)N$$
 .

How can we find an ionisation fraction operator?

Defining an heating operator

$$rac{\mathrm{d}\hat{Q}_k}{\mathrm{d}t} = (1-\hat{x}_k)S(t)N\,.$$

Expression for x obtained from modified Saha equation:

$$\begin{aligned} \frac{x^2}{1-x} &= \frac{(2\pi m_e k_B T)^{3/2}}{h^3 \rho} e^{\frac{h\nu_L}{k_B T}} \\ &\times \frac{\int_{\nu_L}^{\infty} \mathrm{d}\nu \,\psi(\nu) \left(\exp\left(\frac{h\nu}{k_B T_\star(t)}\right) - 1\right)^{-1}}{\int_{\nu_L}^{\infty} \mathrm{d}\nu \,\psi(\nu) \exp\left(-\frac{h\nu_L}{k_B T}\right) \left(1 + \left(\exp\left(\frac{h\nu}{k_B T_\star(t)}\right) - 1\right)^{-1}\right)} \,. \end{aligned}$$

Defining an heating operator

$$rac{\mathrm{d}\hat{Q}_k}{\mathrm{d}t} = (1-\hat{x}_k)S(t)N$$
 .

Do a linear Taylor expansion in two variables:

$$x \approx \frac{1}{2} + x_{\rho_0}(\rho - \rho_0) + x_{T_0}(T - T_0)$$

with

$$\begin{split} x_{\rho_0} &= \frac{\partial x}{\partial \rho} \Big|_{x=\frac{1}{2}} = -\frac{1}{6\rho_0} \,, \\ x_{T_0} &= \frac{\partial x}{\partial T} \Big|_{x=\frac{1}{2}} = \frac{1}{6} \left[\frac{3}{2T_0} + \frac{h\nu_L}{k_B T_0^2} - C(T_0, T_\star) \right] \,, \\ C(T_0, T_\star) &= \frac{\int \mathrm{d}\nu \,\psi(\nu) \frac{h\nu}{k_B T_0^2} \exp\left(-\frac{h\nu}{k_B T_0}\right) \left(\frac{8\pi h\nu^3}{c^2} + J_\nu(\nu, t)\right)}{\int \mathrm{d}\nu \,\psi(\nu) \exp\left(-\frac{h\nu}{k_B T_0}\right) \left(\frac{8\pi h\nu^3}{c^2} + J_\nu(\nu, t)\right)} \,. \end{split}$$

Defining an heating operator

$$rac{\mathrm{d}\hat{Q}_k}{\mathrm{d}t} = (1-\hat{x}_k)S(t)N\,.$$

Do a linear Taylor expansion in two variables:

$$x \approx \frac{1}{2} + x_{\rho_0}(\rho - \rho_0) + x_{T_0}(T - T_0)$$

Receive for the heating operator

$$\frac{\mathrm{d}\hat{Q}_k}{\mathrm{d}t} = (1-\hat{x}_k)S(t)N = S(t)N\left[\frac{1}{2} + x_{T_0}T_0 - \frac{2x_{T_0}}{5k_BN}\hat{\mathcal{H}}_k\right]$$

•

Interaction Operator

The interacting part of the action gains an additional term

$$\begin{aligned} S_{\psi,I}[\psi] &= \int \mathrm{d}1 \int \mathrm{d}2\,\Phi_f(-1)\sigma_{f\mathcal{B}_\rho}(1,-2)\Phi_{\mathcal{B}_\rho}(2) \\ &+ \Phi_f(-1)\vec{\sigma}_{f\mathcal{B}_\mathcal{H}}(1,-2)\cdot\vec{\Phi}_{\mathcal{B}_\mathcal{H}}(2) + \Phi_f(-1)\sigma_{f\mathcal{B}_{\mathcal{H},source}}(1,-2)\Phi_{source}(1) \end{aligned}$$

Here, we defined

$$\begin{split} \Phi_{f}(1) &= \sum_{j=1}^{N} e^{-i\vec{k}_{1}\vec{q}_{j}(t_{1}) - i\vec{l}_{1}\vec{p}_{j}(t_{1}) - iy_{1}\mathcal{H}_{j}(t_{1})} \,, \\ \Phi_{source}(1) &= \sum_{j=1}^{N} \chi_{\mathcal{H}_{j}}(t_{1})e^{-i\vec{k}_{1}\vec{q}_{j} - i\vec{l}_{1}\vec{p}_{j} - iy_{1}\mathcal{H}_{j}} \,, \\ \sigma_{f\mathcal{B}_{\mathcal{H},source}}(1,2) &= -\gamma \frac{m}{\bar{\rho}_{m}}w(k_{1})(2\pi)^{11}\delta_{D}(t_{1} - t_{2})\delta_{D}(\vec{k}_{1} + \vec{k}_{2}) \\ &\times \delta_{D}(\vec{l}_{1})\,\delta_{D}(\vec{l}_{2})\,\delta_{D}(y_{1})\,\delta_{D}(y_{2})S(t_{1})\left[\frac{1}{2} + x_{T_{0}}T_{0} - \frac{2x_{T_{0}}}{5k_{B}N}i\partial_{y_{1}}\right] \end{split}$$

Interaction Operator

The interacting part of the action gains an additional term

$$\begin{aligned} S_{\psi,I}[\psi] &= \int \mathrm{d}1 \int \mathrm{d}2\,\Phi_f(-1)\sigma_{f\mathcal{B}_\rho}(1,-2)\Phi_{\mathcal{B}_\rho}(2) \\ &+ \Phi_f(-1)\vec{\sigma}_{f\mathcal{B}_\mathcal{H}}(1,-2)\cdot\vec{\Phi}_{\mathcal{B}_\mathcal{H}}(2) + \Phi_f(-1)\sigma_{f\mathcal{B}_{\mathcal{H},source}}(1,-2)\Phi_{source}(1) \end{aligned}$$

Here, we defined

$$\begin{split} \Phi_{f}(1) &= \sum_{j=1}^{N} e^{-i\vec{k}_{1}\vec{q}_{j}(t_{1}) - i\vec{l}_{1}\vec{p}_{j}(t_{1}) - iy_{1}\mathcal{H}_{j}(t_{1})} \,, \\ \Phi_{source}(1) &= \sum_{j=1}^{N} \chi_{\mathcal{H}_{j}}(t_{1})e^{-i\vec{k}_{1}\vec{q}_{j} - i\vec{l}_{1}\vec{p}_{j} - iy_{1}\mathcal{H}_{j}} \,, \\ \sigma_{f\mathcal{B}_{\mathcal{H},source}}(1,2) &= -\gamma \frac{m}{\bar{\rho}_{m}} w(k_{1})(2\pi)^{11}\delta_{D}(t_{1} - t_{2})\delta_{D}(\vec{k}_{1} + \vec{k}_{2}) \\ &\times \delta_{D}(\vec{l}_{1})\,\delta_{D}(\vec{l}_{2})\,\delta_{D}(y_{1})\,\delta_{D}(y_{2})S(t_{1})\left[\frac{1}{2} + x_{T_{0}}\,T_{0} - \frac{2x_{T_{0}}}{5k_{B}N}i\partial_{y_{1}}\right] \end{split}$$

Define again

$$\Phi_{\mathcal{F}} = \sigma_{fB_{\rho}} \cdot \Phi_{B_{\rho}} + \vec{\sigma}_{fB_{\mathcal{H}}} \cdot \vec{\Phi}_{B_{\mathcal{H}}} + \sigma_{fB_{\mathcal{H},source}} \cdot \Phi_{\textit{source}}$$

Outline

Motivation

Basics

Including Baryons in KFT Computing Power Spectra With RKFT

Model in Static Spacetime

Modelling Reionization Static Model With RKFT

Static Analytic Toy Model

Model in Expanding Spacetime

Expanding Model With RKFT 21cm Power Spectrum

Open Problems

Conclusion

As shown before, for computing the power spectrum we need to calculate: $G_{ff} \approx \Delta_{ff}$ (on tree-level), $G_{ff}^{(0)} = \langle \Phi_f \Phi_f \rangle_c$ and $G_{f\mathcal{F}_{source}}^{(0)} = \sigma_{f\mathcal{B}_{source}} \cdot G_{f\mathcal{B}_{source}}^{(0)}$, $G_{f\mathcal{B}_{source}}^{(0)} = \langle \Phi_f \Phi_{source} \rangle_c$.

As shown before, for computing the power spectrum we need to calculate: $G_{ff} \approx \Delta_{ff}$ (on tree-level), $G_{ff}^{(0)} = \langle \Phi_f \Phi_f \rangle_c$ and $G_{f\mathcal{F}_{source}}^{(0)} = \sigma_{f\mathcal{B}_{source}} \cdot G_{f\mathcal{B}_{source}}^{(0)}$, $G_{f\mathcal{B}_{source}}^{(0)} = \langle \Phi_f \Phi_{source} \rangle_c$. To compute $G_{f\mathcal{B}_{source}}$ we make the following observation:

$$\hat{\Phi}_{source}(r) = \sum_{j=1}^{N} \hat{b}_{source_j}(r) \hat{\Phi}_{f_j}(r) = \sum_{j=1}^{N} \hat{\chi}_{H_j}(t_r) \hat{\Phi}_{f_j}(r) = \sum_{j=1}^{N} \frac{\delta}{i\delta \mathcal{K}_{\mathcal{H}_j}(t_r)} \hat{\Phi}_{f_j}(r).$$

As shown before, for computing the power spectrum we need to calculate: $G_{ff} \approx \Delta_{ff}$ (on tree-level), $G_{ff}^{(0)} = \langle \Phi_f \Phi_f \rangle_c$ and $G_{f\mathcal{F}_{source}}^{(0)} = \sigma_{f\mathcal{B}_{source}} \cdot G_{f\mathcal{B}_{source}}^{(0)}$, $G_{f\mathcal{B}_{source}}^{(0)} = \langle \Phi_f \Phi_{source} \rangle_c$. To compute $G_{f\mathcal{B}_{source}}$ we make the following observation:

$$\hat{\Phi}_{source}(r) = \sum_{j=1}^{N} \hat{b}_{source_j}(r) \hat{\Phi}_{f_j}(r) = \sum_{j=1}^{N} \hat{\chi}_{H_j}(t_r) \hat{\Phi}_{f_j}(r) = \sum_{j=1}^{N} \frac{\delta}{i\delta K_{\mathcal{H}_j}(t_r)} \hat{\Phi}_{f_j}(r).$$

Thus, shift all response operators to the left and first apply the density operators.

As shown before, for computing the power spectrum we need to calculate: $G_{ff} \approx \Delta_{ff}$ (on tree-level), $G_{ff}^{(0)} = \langle \Phi_f \Phi_f \rangle_c$ and $G_{f\mathcal{F}_{source}}^{(0)} = \sigma_{f\mathcal{B}_{source}} \cdot G_{f\mathcal{B}_{source}}^{(0)}$, $G_{f\mathcal{B}_{source}}^{(0)} = \langle \Phi_f \Phi_{source} \rangle_c$. To compute $G_{f\mathcal{B}_{source}}$ we make the following observation:

$$\hat{\Phi}_{source}(r) = \sum_{j=1}^{N} \hat{b}_{source_j}(r) \hat{\Phi}_{f_j}(r) = \sum_{j=1}^{N} \hat{\chi}_{H_j}(t_r) \hat{\Phi}_{f_j}(r) = \sum_{j=1}^{N} \frac{\delta}{i\delta \mathcal{K}_{\mathcal{H}_j}(t_r)} \hat{\Phi}_{f_j}(r).$$

Thus, shift all response operators to the left and first apply the density operators.

Later work out the effect of the response operator an the shifted generating functional

$$\hat{b}_{source_j}(r)Z_0[\mathbf{J}+\mathbf{L},\mathbf{K}]\Big|_{\mathbf{J}=0=\mathbf{K}} = \sum_{u\in I_j} y_u g_{\mathcal{H}\mathcal{H}}(t_u,t_r)Z_0[\mathbf{L},0].$$

Ingredients for the Computation of Power Spectra Propagators:

$$g_{qq}(t, t') = g_{pp}(t, t') = g_{\mathcal{HH}}(t, t') = \Theta(t - t'),$$

$$g_{qp}(t, t') = \frac{t - t'}{m}, \ g_{pq}(t, t') = 0.$$

Propagators:

$$g_{qq}(t, t') = g_{pp}(t, t') = g_{\mathcal{HH}}(t, t') = \Theta(t - t'),$$

$$g_{qp}(t, t') = \frac{t - t'}{m}, \ g_{pq}(t, t') = 0.$$

Required cumulants:

$$\begin{split} G_{ff}^{(0)}(1,2) &= (2\pi)^{3} \delta_{D}(\vec{k}_{1}+\vec{k}_{2}) \bar{\rho}^{2} P_{\delta}^{(i)}(k_{1}) e^{i(y_{1}+y_{2})\mathcal{H}_{i}} \,, \\ G_{f\mathcal{F}}^{(0)}(1,2) &= (2\pi)^{7} \delta_{D}(\vec{k}_{1}+\vec{k}_{2}) i \bar{\rho} \\ &\times \left[\left(v_{G}(k_{1}) + v_{P_{\rho}}^{b}(k_{1},t_{1}) i \partial_{y_{2}} \right) \left(k_{1}^{2} g_{q\rho}(t_{1},t_{2}) + \vec{k}_{1} \cdot \vec{l}_{1} \Theta(t_{1}-t_{2}) \right) \right. \\ &+ v_{P_{\mathcal{H}}}^{b}(k_{1},t_{1}) y_{1} \vec{k}_{1} \cdot i \vec{\partial}_{b} i \partial_{y_{2}} \Theta(t_{1}-t_{2}) \\ &- \gamma \frac{m}{\bar{\rho}_{m}} w(k_{2}) S(t_{2}) N \left[\frac{1}{2} + x_{T_{0}} T_{0} - \frac{2x_{T_{0}}}{5k_{B}N} i \partial_{y_{2}} \right] y_{1} \Theta(t_{1}-t_{2}) \right] \\ &\times \delta_{D}(\vec{l}_{2}) \, \delta_{D}(y_{2}) e^{-iy_{1}\mathcal{H}^{(i)}} \,. \end{split}$$

Propagators:

$$g_{qq}(t, t') = g_{pp}(t, t') = g_{\mathcal{HH}}(t, t') = \Theta(t - t'),$$

 $g_{qp}(t, t') = \frac{t - t'}{m}, \ g_{pq}(t, t') = 0.$

Required cumulants:

$$\begin{split} G_{ff}^{(0)}(1,2) &= (2\pi)^{3} \delta_{D}(\vec{k}_{1}+\vec{k}_{2}) \bar{\rho}^{2} P_{\delta}^{(i)}(k_{1}) e^{i(y_{1}+y_{2})\mathcal{H}_{i}} \,, \\ G_{f\mathcal{F}}^{(0)}(1,2) &= (2\pi)^{7} \delta_{D}(\vec{k}_{1}+\vec{k}_{2}) i \bar{\rho} \\ &\times \left[\left(v_{G}(k_{1}) + v_{P_{\rho}}^{b}(k_{1},t_{1}) i \partial_{y_{2}} \right) \left(k_{1}^{2} g_{q\rho}(t_{1},t_{2}) + \vec{k}_{1} \cdot \vec{l}_{1} \Theta(t_{1}-t_{2}) \right) \right. \\ &+ v_{P_{\mathcal{H}}}^{b}(k_{1},t_{1}) y_{1} \vec{k}_{1} \cdot i \vec{\partial}_{l_{2}} i \partial_{y_{2}} \Theta(t_{1}-t_{2}) \\ &- \gamma \frac{m}{\bar{\rho}_{m}} w(k_{2}) S(t_{2}) N \left[\frac{1}{2} + x_{T_{0}} T_{0} - \frac{2x_{T_{0}}}{5k_{B}N} i \partial_{y_{2}} \right] y_{1} \Theta(t_{1}-t_{2}) \right] \\ &\times \delta_{D}(\vec{l}_{2}) \, \delta_{D}(y_{2}) e^{-iy_{1}\mathcal{H}^{(i)}} \,. \end{split}$$

Here, we defined the potentials

$$v_{P_{\rho}}^{b}(k) = \frac{m}{\bar{\rho}_{m}^{b}} \frac{\gamma - 1}{\gamma} w(k), v_{P_{\mathcal{H}}}^{b}(k) = \frac{1}{\bar{\rho}_{m}^{b}} (\gamma - 1) w(k), v_{G}^{\alpha \gamma} = -\frac{4\pi G m^{\alpha} m^{\gamma}}{k^{2}}.$$
Results for the Matter PS (Constant Part) $_{s=3.5 + 10^{-19+s} \frac{\text{erg}}{\text{s}}}$

29 / 55

Results for the Matter Power Spectrum (Second Part)

Outline

Motivation

Basics

Including Baryons in KFT Computing Power Spectra With RKFT

Model in Static Spacetime

Modelling Reionization Static Model With RKFT Static Analytic Toy Model

Model in Expanding Spacetime Expanding Model With RKFT

21cm Power Spectrum

Open Problems

Conclusion

Analytic Toy Model

Start with the hydrodynamical equations again

$$\begin{aligned} \frac{\partial \rho_m}{\partial t} + \vec{\nabla} (\rho_m \vec{u}) &= 0, \\ \frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \vec{\nabla}) \vec{u} &= -\frac{(\gamma - 1)\vec{\nabla}h}{\gamma \rho}, \\ \frac{\partial h}{\partial t} + (\vec{u} \cdot \vec{\nabla})h + \gamma h \vec{\nabla} \cdot \vec{u} &= (1 - x) \rho S(t) N. \end{aligned}$$

Adopting the ansatz

 $\label{eq:relation} \rho = \rho_0 (1+\delta)\,, \quad \vec{u} = \vec{v}_0 + a\vec{v}\,, \quad P = P_0 + \delta P\,, \quad \Phi = \Phi_0 + \phi\,, \quad h = h_0 + h\,.$

Adopting the ansatz

$$\label{eq:rho} \begin{split} \rho &= \rho_0 (1+\delta) \,, \quad \vec{u} = \vec{v}_0 + a \vec{v} \,, \quad P = P_0 + \delta P \,, \quad \Phi = \Phi_0 + \phi \,, \quad h = h_0 + h \,, \end{split}$$
 the enthalpy equation

$$\frac{\partial h}{\partial t} + (\vec{u} \cdot \vec{\nabla})h + \gamma \, h \vec{\nabla} \cdot \vec{u} = (1 - x) \, \rho \, S(t) N$$

Adopting the ansatz

$$\label{eq:rho} \begin{split} \rho &= \rho_0 (1+\delta)\,, \quad \vec{u} = \vec{v}_0 + a \vec{v}\,, \quad P = P_0 + \delta P\,, \quad \varPhi = \varPhi_0 + \phi\,, \quad h = h_0 + h\,, \end{split}$$
 the enthalpy equation

$$\frac{\partial h}{\partial t} + (\vec{u} \cdot \vec{\nabla})h + \gamma h \vec{\nabla} \cdot \vec{u} = (1 - x) \rho S(t) N$$

changes to (+ linearised)

$$\begin{split} \dot{h}_0 + \dot{\hbar} + \vec{v}_0 \vec{\nabla} \hbar + \gamma \hbar \vec{\nabla} \cdot \vec{v}_0 + \gamma h_0 \vec{\nabla} \cdot (\vec{v}_0 + \vec{v}) \\ = S(t) N \left[\left(\frac{1}{2} + x_{T_0} T_0 \right) \rho_0 (1 + \delta) - \frac{2 x_{T_0}}{5 k_B N} (h_0 + \hbar) \right] \end{split}$$

٠

Adopting the ansatz

$$\label{eq:rho} \begin{split} \rho &= \rho_0 (1+\delta)\,, \quad \vec{u} = \vec{v}_0 + a \vec{v}\,, \quad P = P_0 + \delta P\,, \quad \Phi = \Phi_0 + \phi\,, \quad h = h_0 + \hbar\,, \end{split}$$
 the enthalpy equation

$$\frac{\partial h}{\partial t} + (\vec{u} \cdot \vec{\nabla})h + \gamma \, h \vec{\nabla} \cdot \vec{u} = (1 - x) \, \rho \, S(t) N$$

changes to (+ linearised)

$$egin{aligned} \dot{h}_0 + \dot{\hbar} + ec{v}_0 ec{
abla} \hbar + \gamma \hbar ec{
abla} \cdot ec{v}_0 + \gamma h_0 ec{
abla} \cdot (ec{v}_0 + ec{v}) \ &= S(t) N\left[\left(rac{1}{2} + x_{\mathcal{T}_0} \mathcal{T}_0
ight)
ho_0 (1 + \delta) - rac{2 x_{\mathcal{T}_0}}{5 k_B N} (h_0 + \hbar)
ight] \end{aligned}$$

Subtracting the background

$$\dot{h}_0 + \gamma h_0 \vec{\nabla} \cdot \vec{v}_0 = S(t) N \left[\left(\frac{1}{2} + x_{T_0} T_0 \right) \rho_0 - \frac{2 x_{T_0}}{5 k_B N} h_0 \right]$$

Adopting the ansatz

$$\label{eq:rho} \begin{split} \rho &= \rho_0(1+\delta)\,, \quad \vec{u} = \vec{v}_0 + a\vec{v}\,, \quad P = P_0 + \delta P\,, \quad \Phi = \Phi_0 + \phi\,, \quad h = h_0 + \hbar\,, \end{split}$$
 the enthalpy equation

$$\frac{\partial h}{\partial t} + (\vec{u} \cdot \vec{\nabla})h + \gamma h \vec{\nabla} \cdot \vec{u} = (1 - x) \rho S(t) N$$

changes to (+ linearised)

$$egin{aligned} \dot{h}_0 + \dot{\hbar} + ec{v}_0ec{
abla} \hbar + \gamma \hbarec{
abla} \cdot ec{v}_0 + \gamma h_0ec{
abla} \cdot (ec{v}_0 + ec{v}) \ &= S(t) \mathcal{N}\left[\left(rac{1}{2} + x_{\mathcal{T}_0} \mathcal{T}_0
ight)
ho_0(1+\delta) - rac{2x_{\mathcal{T}_0}}{5k_B \mathcal{N}}(h_0+\hbar)
ight] \end{aligned}$$

Subtracting the background

$$\dot{h}_0 + \gamma h_0 \vec{\nabla} \cdot \vec{v}_0 = S(t) N \left[\left(\frac{1}{2} + x_{T_0} T_0 \right) \rho_0 - \frac{2 x_{T_0}}{5 k_B N} h_0 \right]$$

leads to

$$\dot{h} + \dot{a}\vec{x}\vec{\nabla}h + \gamma h_0\vec{\nabla}\cdot\vec{v} + 3\gamma h\dot{a} = S(t)N\left[\left(\frac{1}{2} + x_{T_0}T_0\right)\rho_0\delta - \frac{2x_{T_0}}{5k_BN}h\right]$$

٠

Transforming the derivatives to comoving coordinates according to

$$ec{
abla} o a^{-1} ec{
abla} \,, \qquad \partial_t o \partial_t - H ec{x} \cdot ec{
abla}$$

and using the continuity equation

Transforming the derivatives to comoving coordinates according to

$$ec{
abla} o a^{-1} ec{
abla} \,, \qquad \partial_t o \partial_t - H ec{x} \cdot ec{
abla}$$

and using the continuity equation yields

$$\dot{h} - \gamma \frac{h_0}{a} \delta + 3\gamma h \dot{a} = S(t) N \left[\left(\frac{1}{2} + x_{T_0} T_0 \right) \rho_0 \delta - \frac{2x_{T_0}}{5k_B N} h \right].$$

Transforming the derivatives to comoving coordinates according to

$$ec{
abla} o a^{-1} ec{
abla} \,, \qquad \partial_t o \partial_t - H ec{x} \cdot ec{
abla}$$

and using the continuity equation yields

$$\dot{h} - \gamma \frac{h_0}{a} \delta + 3\gamma h \dot{a} = S(t) N \left[\left(\frac{1}{2} + x_{T_0} T_0 \right) \rho_0 \delta - \frac{2x_{T_0}}{5k_B N} h \right]$$

For the static case we can set $\dot{a} = 0$ and a = 1

Transforming the derivatives to comoving coordinates according to

$$ec{
abla} o a^{-1} ec{
abla} \,, \qquad \partial_t o \partial_t - H ec{x} \cdot ec{
abla}$$

and using the continuity equation yields

$$\dot{h} - \gamma \frac{h_0}{a} \delta + 3\gamma h \dot{a} = S(t) N \left[\left(\frac{1}{2} + x_{T_0} T_0 \right) \rho_0 \delta - \frac{2 x_{T_0}}{5 k_B N} h \right] \,.$$

For the static case we can set $\dot{a} = 0$ and a = 1, thus

$$\dot{h} = \gamma h_0 \dot{\delta} + S(t) N \left[\left(\frac{1}{2} + x_{T_0} T_0 \right) \rho_0 \delta - \frac{2 x_{T_0}}{5 k_B N} h \right]$$

Transforming the derivatives to comoving coordinates according to

$$ec{
abla} o a^{-1} ec{
abla} \,, \qquad \partial_t o \partial_t - H ec{x} \cdot ec{
abla}$$

and using the continuity equation yields

$$\dot{h} - \gamma \frac{h_0}{a} \delta + 3\gamma h \dot{a} = S(t) N \left[\left(\frac{1}{2} + x_{T_0} T_0 \right) \rho_0 \delta - \frac{2 x_{T_0}}{5 k_B N} h \right] \,.$$

For the static case we can set $\dot{a} = 0$ and a = 1, thus

$$\dot{h} = \gamma h_0 \dot{\delta} + S(t) N\left[\left(\frac{1}{2} + x_{T_0} T_0\right) \rho_0 \delta - \frac{2x_{T_0}}{5k_B N} h\right],$$

$$\ddot{\delta} = 4\pi G m
ho_0 \delta + rac{\gamma-1}{\gamma
ho_0 m} ec
abla^2 h \, .$$

Transforming the derivatives to comoving coordinates according to

$$ec{
abla} o a^{-1} ec{
abla} \,, \qquad \partial_t o \partial_t - H ec{x} \cdot ec{
abla}$$

and using the continuity equation yields

$$\dot{h} - \gamma \frac{h_0}{a} \delta + 3\gamma h \dot{a} = S(t) N \left[\left(\frac{1}{2} + x_{T_0} T_0 \right) \rho_0 \delta - \frac{2x_{T_0}}{5k_B N} h \right]$$

For the static case we can set $\dot{a} = 0$ and a = 1

$$\ddot{\delta}_{k} = 4\pi Gm\rho_{0}\delta_{k} - \frac{\gamma - 1}{\gamma\rho_{0}m}k^{2}h,$$

$$\dot{h}_{k} = \gamma h_{0}\dot{\delta}_{k} + S(t)N\left[\left(\frac{1}{2} + x_{T_{0}}T_{0}\right)\rho_{0}\delta_{k} - \frac{2x_{T_{0}}}{5k_{B}N}h_{k}\right]$$

Solving the Toy Model

Transform this set of equations

$$\begin{split} \ddot{\delta}_{k} &= 4\pi Gm \rho_{0} \delta_{k} - \frac{\gamma - 1}{\gamma \rho_{0} m} k^{2} \hbar \,, \\ \dot{h}_{k} &= \gamma h_{0} \dot{\delta}_{k} + S(t) N\left[\left(\frac{1}{2} + x_{T_{0}} T_{0} \right) \rho_{0} \delta_{k} - \frac{2x_{T_{0}}}{5k_{B} N} h_{k} \right] \end{split}$$

into a system of coupled differential equations of first order

$$\begin{split} \dot{y}_0 &= y_1 \,, \\ \dot{y}_1 &= 4\pi \, Gm \rho_0 y_0 - \frac{\gamma - 1}{\gamma \rho_0 m} k^2 y_2 \eqqcolon a y_0 - b y_2 \,, \\ \dot{y}_2 &= \gamma h_0 y_1 + S(t) \mathcal{N}\left(\frac{1}{2} + x_{\mathcal{T}_0} \mathcal{T}_0\right) \rho_0 y_0 - S(t) \frac{2x_{\mathcal{T}_0}}{5k_B} y_2 \eqqcolon dy_1 + c y_0 - f y_2 \,. \end{split}$$

Solving the Toy Model

$$\begin{split} \dot{y}_0 &= y_1 \,, \\ \dot{y}_1 &= 4\pi \, Gm \rho_0 y_0 - \frac{\gamma - 1}{\gamma \rho_0 m} k^2 y_2 \eqqcolon a y_0 - b y_2 \,, \\ \dot{y}_2 &= \gamma h_0 y_1 + S(t) N\left(\frac{1}{2} + x_{T_0} T_0\right) \rho_0 y_0 - S(t) \frac{2x_{T_0}}{5k_B} y_2 \eqqcolon dy_1 + c y_0 - f y_2 \,. \end{split}$$

Let us collect these equations into a matrix equation

$$\dot{\vec{y}} = M \cdot \vec{y}$$
,

with the following identifications

$$\vec{y} = \begin{pmatrix} \delta \\ \dot{\delta} \\ h \end{pmatrix}, \qquad M = \begin{pmatrix} 0 & 1 & 0 \\ a & 0 & -b \\ c & d & -f \end{pmatrix}$$

•

For c = 0 = f, the equation is solved by

$$\vec{y}(t) = e^{Mt} \vec{C}$$

The solution reads

$$\vec{y}(t) = e^{Mt} \vec{C}$$
 .

with

$$e^{Mt} = \begin{pmatrix} \frac{-bd}{\xi} \cosh(\sqrt{\xi}t) - \frac{bd}{\xi} & \frac{1}{\sqrt{\xi}} \sinh(\sqrt{\xi}t) & \frac{-b}{\xi} \cosh(\sqrt{\xi}t) - \frac{b}{\xi} \\ \frac{a}{\sqrt{\xi}} \sinh(\sqrt{\xi}t) & \cosh(\sqrt{\xi}t) & \frac{-b}{\sqrt{\xi}} \sinh(\sqrt{\xi}t) \\ \frac{ad}{\xi} \cosh(\sqrt{\xi}t) - \frac{ad}{\xi} & \frac{d}{\sqrt{\xi}} \sinh(\sqrt{\xi}t) & \frac{-bd}{\xi} \cosh(\sqrt{\xi}t) + \frac{a}{\xi} \end{pmatrix}$$

٠

The solution reads

$$\vec{y}(t) = e^{Mt} \vec{C}$$
 .

with

$$e^{Mt} = \begin{pmatrix} \frac{-bd}{\xi} \cosh(\sqrt{\xi}t) - \frac{bd}{\xi} & \frac{1}{\sqrt{\xi}} \sinh(\sqrt{\xi}t) & \frac{-b}{\xi} \cosh(\sqrt{\xi}t) - \frac{b}{\xi} \\ \frac{a}{\sqrt{\xi}} \sinh(\sqrt{\xi}t) & \cosh(\sqrt{\xi}t) & \frac{-b}{\sqrt{\xi}} \sinh(\sqrt{\xi}t) \\ \frac{ad}{\xi} \cosh(\sqrt{\xi}t) - \frac{ad}{\xi} & \frac{d}{\sqrt{\xi}} \sinh(\sqrt{\xi}t) & \frac{-bd}{\xi} \cosh(\sqrt{\xi}t) + \frac{a}{\xi} \end{pmatrix}$$

Interpretation:

The solution reads

$$\vec{y}(t) = e^{Mt} \vec{C}$$
 .

with

$$e^{Mt} = \begin{pmatrix} \frac{-bd}{\xi} \cosh(\sqrt{\xi}t) - \frac{bd}{\xi} & \frac{1}{\sqrt{\xi}} \sinh(\sqrt{\xi}t) & \frac{-b}{\xi} \cosh(\sqrt{\xi}t) - \frac{b}{\xi} \\ \frac{a}{\sqrt{\xi}} \sinh(\sqrt{\xi}t) & \cosh(\sqrt{\xi}t) & \frac{-b}{\sqrt{\xi}} \sinh(\sqrt{\xi}t) \\ \frac{ad}{\xi} \cosh(\sqrt{\xi}t) - \frac{ad}{\xi} & \frac{d}{\sqrt{\xi}} \sinh(\sqrt{\xi}t) & \frac{-bd}{\xi} \cosh(\sqrt{\xi}t) + \frac{a}{\xi} \end{pmatrix}$$

Interpretation:

• two regimes: $\xi = a - bd = 0$ $k_J^2 = \frac{4\pi G \rho_0^2 m^2}{(\gamma - 1)h_0}.$

The solution reads

$$\vec{y}(t) = e^{Mt} \vec{C}$$
 .

with

$$e^{Mt} = \begin{pmatrix} \frac{-bd}{\xi} \cosh(\sqrt{\xi}t) - \frac{bd}{\xi} & \frac{1}{\sqrt{\xi}} \sinh(\sqrt{\xi}t) & \frac{-b}{\xi} \cosh(\sqrt{\xi}t) - \frac{b}{\xi} \\ \frac{a}{\sqrt{\xi}} \sinh(\sqrt{\xi}t) & \cosh(\sqrt{\xi}t) & \frac{-b}{\sqrt{\xi}} \sinh(\sqrt{\xi}t) \\ \frac{ad}{\xi} \cosh(\sqrt{\xi}t) - \frac{ad}{\xi} & \frac{d}{\sqrt{\xi}} \sinh(\sqrt{\xi}t) & \frac{-bd}{\xi} \cosh(\sqrt{\xi}t) + \frac{a}{\xi} \end{pmatrix}$$

Interpretation:

• two regimes: $\xi = a - bd = 0$ $k_J^2 = \frac{4\pi G \rho_0^2 m^2}{(\gamma - 1)h_0}$. • shift along *y*-axis

The solution reads

$$ec{y}(t)=e^{Mt}ec{C}$$
 .

with

$$e^{Mt} = \begin{pmatrix} \frac{-bd}{\xi} \cosh(\sqrt{\xi}t) - \frac{bd}{\xi} & \frac{1}{\sqrt{\xi}} \sinh(\sqrt{\xi}t) & \frac{-b}{\xi} \cosh(\sqrt{\xi}t) - \frac{b}{\xi} \\ \frac{a}{\sqrt{\xi}} \sinh(\sqrt{\xi}t) & \cosh(\sqrt{\xi}t) & \frac{-b}{\sqrt{\xi}} \sinh(\sqrt{\xi}t) \\ \frac{ad}{\xi} \cosh(\sqrt{\xi}t) - \frac{ad}{\xi} & \frac{d}{\sqrt{\xi}} \sinh(\sqrt{\xi}t) & \frac{-bd}{\xi} \cosh(\sqrt{\xi}t) + \frac{a}{\xi} \end{pmatrix}$$

Interpretation:

 two regimes: ξ = a − bd = 0 k_J² = ^{4πGρ₀²m²}/_{(γ−1)h₀}.

 shift along *y*-axis

Figure: density contrast power spectrum

Including Reionization (Constant Part)

38 / 55

Including Reionization (Second Part)

The system of equations

$$\begin{split} \dot{y}_0 &= y_1 \,, \\ \dot{y}_1 &= 4\pi G m \rho_0 y_0 - \frac{\gamma - 1}{\gamma \rho_0 m} k^2 y_2 \eqqcolon a y_0 - b y_2 \,, \\ \dot{y}_2 &= \gamma h_0 y_1 + S(t) N\left(\frac{1}{2} + x_{T_0} T_0\right) \rho_0 y_0 - S(t) \frac{2x_{T_0}}{5k_B} y_2 \eqqcolon dy_1 + c y_0 - f y_2 \,. \end{split}$$

Approximations:

• for small scales/large k: a = 0.

The system of equations

$$\begin{split} \dot{y}_0 &= y_1 \,, \\ \dot{y}_1 &= 4\pi G m \rho_0 y_0 - \frac{\gamma - 1}{\gamma \rho_0 m} k^2 y_2 \eqqcolon a y_0 - b y_2 \,, \\ \dot{y}_2 &= \gamma h_0 y_1 + S(t) N\left(\frac{1}{2} + x_{T_0} T_0\right) \rho_0 y_0 - S(t) \frac{2x_{T_0}}{5k_B} y_2 \eqqcolon dy_1 + c y_0 - f y_2 \,. \end{split}$$

Approximations:

- for small scales/large k: a = 0.
- for large heating: d = 0.

The system of equations

$$\begin{split} \dot{y}_0 &= y_1 \,, \\ \dot{y}_1 &= 4\pi G m \rho_0 y_0 - \frac{\gamma - 1}{\gamma \rho_0 m} k^2 y_2 \eqqcolon a y_0 - b y_2 \,, \\ \dot{y}_2 &= \gamma h_0 y_1 + S(t) N\left(\frac{1}{2} + x_{T_0} T_0\right) \rho_0 y_0 - S(t) \frac{2x_{T_0}}{5k_B} y_2 \eqqcolon dy_1 + c y_0 - f y_2 \,. \end{split}$$

Approximations:

- for small scales/large k: a = 0.
- for large heating: d = 0.
- for simplicity: f = 0.

The system of equations

$$\begin{split} \dot{y}_0 &= y_1 \,, \\ \dot{y}_1 &= 4\pi G m \rho_0 y_0 - \frac{\gamma - 1}{\gamma \rho_0 m} k^2 y_2 \eqqcolon a y_0 - b y_2 \,, \\ \dot{y}_2 &= \gamma h_0 y_1 + S(t) N\left(\frac{1}{2} + x_{T_0} T_0\right) \rho_0 y_0 - S(t) \frac{2x_{T_0}}{5k_B} y_2 \eqqcolon dy_1 + c y_0 - f y_2 \,. \end{split}$$

Approximations:

- for small scales/large k: a = 0.
- for large heating: d = 0.
- for simplicity: f = 0.

With that the equations simplify to

$$\ddot{\delta} = -bh$$
, $\dot{h} = c\delta$.

The system of equations

$$\begin{split} \dot{y}_0 &= y_1 \,, \\ \dot{y}_1 &= 4\pi G m \rho_0 y_0 - \frac{\gamma - 1}{\gamma \rho_0 m} k^2 y_2 \eqqcolon a y_0 - b y_2 \,, \\ \dot{y}_2 &= \gamma h_0 y_1 + S(t) N\left(\frac{1}{2} + x_{T_0} T_0\right) \rho_0 y_0 - S(t) \frac{2x_{T_0}}{5k_B} y_2 \eqqcolon dy_1 + c y_0 - f y_2 \,. \end{split}$$

Approximations:

- for small scales/large k: a = 0.
- for large heating: d = 0.
- for simplicity: f = 0.

With that the equations simplify to

$$\ddot{\delta} = -bh$$
, $\dot{h} = c\delta$.

Combine both equations

$$\delta = -bc\delta$$
.

The system of equations

$$\begin{split} \dot{y}_0 &= y_1 \,, \\ \dot{y}_1 &= 4\pi G m \rho_0 y_0 - \frac{\gamma - 1}{\gamma \rho_0 m} k^2 y_2 \eqqcolon a y_0 - b y_2 \,, \\ \dot{y}_2 &= \gamma h_0 y_1 + S(t) N\left(\frac{1}{2} + x_{T_0} T_0\right) \rho_0 y_0 - S(t) \frac{2x_{T_0}}{5k_B} y_2 \eqqcolon dy_1 + c y_0 - f y_2 \,. \end{split}$$

Approximations:

- for small scales/large k: a = 0.
- for large heating: d = 0.
- for simplicity: f = 0.

With that the equations simplify to

$$\ddot{\delta} = -bh$$
, $\dot{h} = c\delta$.

Combine both equations

$$\dot{\delta} = -bc\delta$$
.

Solved by

$$\delta(t) = e^{(-bc)^{1/3}t} = e^{(bc)^{1/3}\frac{t}{2}}e^{i(bc)^{1/3}\sin(\frac{\pi}{3})t}.$$

Outline

Motivation

Basics

Including Baryons in KFT Computing Power Spectra With RKFT

Model in Static Spacetime

Modelling Reionization Static Model With RKFT Static Analytic Toy Model

Model in Expanding Spacetime Expanding Model With RKFT 21cm Power Spectrum

Open Problems

Conclusion

Coupling of Dark Matter and Baryons

- So far we considered a purely baryonic system.
- For a cosmologically more meaningful model we need to couple dark and baryonic matter.
- Assign some substructure to the collective fields Φ^α_f and Φ^α_F, the propagators, and vertices, with α labelling the particle species. E.g.:

$$\Phi_{\mathcal{F}}^{\alpha} = \sum_{\gamma = b, d} \left[\sigma_{\mathit{fB}_{\rho}}^{\alpha \gamma} \cdot \Phi_{\mathcal{B}_{\rho}}^{\gamma} + \vec{\sigma}_{\mathit{fB}_{\mathcal{H}}}^{\alpha \gamma} \cdot \vec{\Phi}_{\mathcal{B}_{\mathcal{H}}}^{\gamma} + \sigma_{\mathit{fB}_{\mathcal{H}, \textit{source}}}^{\alpha \gamma} \cdot \Phi_{\mathit{source}}^{\gamma} \right]$$

with

$$egin{aligned} &\sigma^{lpha\gamma}_{fB_{
ho}}(1,2) = -\left(\mathsf{v}^{lpha\gamma}_G(k_1,t_1) + \delta_{lpha b} \delta_{\gamma b} \mathsf{v}^b_{P_{
ho}}(k_1,t_1) i \partial_{y_1}
ight) \ & imes (2\pi)^{11} \delta_D(ec{k}_1+ec{k}_2) \delta_D(ec{l}_1) \delta_D(ec{l}_2) \delta_D(y_1) \delta_D(y_2) \delta_D(t_1-t_2) \,. \end{aligned}$$

Adjustments for the Expanding Spacetime

Again, start with the hydrodynamical equations

$$\begin{split} \frac{\partial \rho_{m,c}}{\partial t} - \mathcal{H}(\vec{x} \cdot \vec{\nabla}) \rho_{m,c} + a^{-1} \vec{\nabla} (\rho_{m,c} \vec{u}) &= 0 \,, \\ \frac{\partial \vec{u}}{\partial t} - \mathcal{H}(\vec{x} \cdot \vec{\nabla}) \vec{u} + a^{-1} (\vec{u} \cdot \vec{\nabla}) \vec{u} &= -\frac{\gamma - 1}{\gamma} a^{-1} \frac{\vec{\nabla} h_c}{\rho_{m,c}} \,, \\ \frac{\partial h_c}{\partial t} - \mathcal{H}(\vec{x} \cdot \vec{\nabla}) h_c + a^{-1} (\vec{u} \cdot \vec{\nabla}) h_c + \gamma \, h_c a^{-1} \vec{\nabla} \cdot \vec{u} &= \frac{m\gamma}{\rho_{m,c}} \frac{\mathrm{d} Q_V}{\mathrm{d} t} \,. \end{split}$$

Enthalpy Equation in Comoving Coordinates

$$\begin{split} \dot{\mathcal{H}}_{j}(t) &= -\frac{m}{\bar{\rho_{m}}} \frac{\gamma - 1}{a} \sum_{k=1}^{N} \mathcal{H}_{k}(t) (\vec{u}_{k} - \vec{u}_{j}) \vec{\nabla}_{q_{j}} w \left(|\vec{q}_{j}(t) - \vec{q}_{k}(t)| \right) \\ &+ \frac{m\gamma}{\bar{\rho}_{m}} \sum_{k=1}^{N-1} \frac{\mathrm{d}\mathcal{Q}_{k}}{\mathrm{d}t} (\mathcal{H}_{k}) w (|\vec{q}_{j} - \vec{q}_{k}|) \end{split}$$

Enthalpy Equation in Comoving Coordinates

$$\dot{\mathcal{H}}_{j}(t) = -rac{m}{ar{
ho_{m}}}rac{\gamma-1}{a}\sum_{k=1}^{N}\mathcal{H}_{k}(t)(ec{u}_{k}-ec{u}_{j})ec{
abla}_{q_{j}}w\left(|ec{q}_{j}(t)-ec{q}_{k}(t)|
ight) + rac{m\gamma}{ar{
ho}_{m}}\sum_{k=1}^{N-1}rac{\mathrm{d}\mathcal{Q}_{k}}{\mathrm{d}t}(\mathcal{H}_{k})w(|ec{q}_{j}-ec{q}_{k}|)$$

Plug in the comoving velocity

$$\vec{u} = \dot{\vec{r}} = \dot{a}\vec{x} + a\dot{\vec{x}},$$

and obtain

$$egin{aligned} \dot{\mathcal{H}}_j(t) &= - \, rac{\gamma-1}{ar{
ho}} \sum_{k=1}^N \mathcal{H}_k(t) \Big[\mathcal{H}(ec{x}_k - ec{x}_j) + (\dot{ec{x}}_k - \dot{ec{x}}_j) \Big] ec{
abla}_{q_j} w \left(|ec{q}_j(t) - ec{q}_k(t)|
ight) \ &+ rac{m\gamma}{ar{
ho}_m} \sum_{k=1}^{N-1} rac{\mathrm{d} Q_k}{\mathrm{d} t} (\mathcal{H}_k) w \left(|ec{q}_j - ec{q}_k|
ight). \end{aligned}$$

Heating Term in Comoving Coordinates

The heating operator is given as

$$\frac{\mathrm{d}\hat{Q}_k}{\mathrm{d}t} = (1-\hat{x}_k)S(t)N\,.$$

Assumptions:

• emission, photoionisation, and the heating in same frame of reference $\implies S \rightarrow S$.

Heating Term in Comoving Coordinates

The heating operator is given as

$$\frac{\mathrm{d}\hat{Q}_k}{\mathrm{d}t} = (1-\hat{x}_k)S(t)N\,.$$

Assumptions:

• emission, photoionisation, and the heating in same frame of reference $\implies S \rightarrow S$.

► *î*?
Heating Term in Comoving Coordinates

The heating operator is given as

$$\frac{\mathrm{d}\hat{Q}_k}{\mathrm{d}t} = (1-\hat{x}_k)S(t)N\,.$$

Assumptions:

- emission, photoionisation, and the heating in same frame of reference $\implies S \rightarrow S$.
- \hat{x} ? It is $x(T_0)$, thus we need a scaling of T_0 :

Heating Term in Comoving Coordinates

The heating operator is given as

$$\frac{\mathrm{d}\hat{Q}_k}{\mathrm{d}t} = (1-\hat{x}_k)S(t)N\,.$$

Assumptions:

- emission, photoionisation, and the heating in same frame of reference $\implies S \rightarrow S$.
- *x̂*? It is *x*(*T*₀), thus we need a scaling of *T*₀: From Saha equation, evaluated at the critical point *x* = 1/2, we obtain *T*₀ ∝ 1/a².

Heating Term in Comoving Coordinates

The heating operator is given as

$$\frac{\mathrm{d}\hat{Q}_k}{\mathrm{d}t} = (1-\hat{x}_k)S(t)N\,.$$

Assumptions:

- emission, photoionisation, and the heating in same frame of reference $\implies S \rightarrow S$.
- *x̂*? It is *x*(*T*₀), thus we need *a* scaling of *T*₀: From Saha equation, evaluated at the critical point *x* = 1/2, we obtain *T*₀ ∝ 1/*a*².

Introduce new time coordinate $\eta = ln(\frac{a}{a_i})$

$$\begin{split} \mathcal{H}'_{j} &= -\frac{\gamma - 1}{\bar{\rho}H}\sum_{k=1}^{N}\mathcal{H}_{k}\left[H(\vec{x}_{k} - \vec{x}_{j}) + H(\vec{x}'_{k} - \vec{x}'_{j})\right]\vec{\nabla}_{q_{j}}w\left(|\vec{q}_{j} - \vec{q}_{k}|\right) \\ &+ \frac{m\gamma}{\bar{\rho}_{m}H}\sum_{k=1}^{N-1}\frac{\mathrm{d}\mathcal{Q}_{k}}{\mathrm{d}t}(\mathcal{H}_{k})w(|\vec{q}_{j} - \vec{q}_{k}|)\,. \end{split}$$

Propagators and Potentials for an Expanding Spacetime

It turns out that the whole formalism stays the same, we just have to consider the new propagators

$$g_{qq}(\eta, \eta') = g_{pp}(\eta, \eta') = g_{\mathcal{H}\mathcal{H}}(\eta, \eta') = \Theta(\eta - \eta'),$$

$$g_{qp}(\eta, \eta') = -2\left(e^{-\eta/2} - e^{-\eta'/2}\right)\Theta(\eta - \eta'),$$

$$g_{pq}(\eta, \eta') = 0$$

Propagators and Potentials for an Expanding Spacetime

It turns out that the whole formalism stays the same, we just have to consider the new propagators

$$g_{qq}(\eta, \eta') = g_{pp}(\eta, \eta') = g_{\mathcal{H}\mathcal{H}}(\eta, \eta') = \Theta(\eta - \eta'),$$

$$g_{qp}(\eta, \eta') = -2\left(e^{-\eta/2} - e^{-\eta'/2}\right)\Theta(\eta - \eta'),$$

$$g_{pq}(\eta, \eta') = 0$$

and potentials

$$\begin{split} v^{b}_{P_{\rho}}(k) &= \frac{\gamma - 1}{\gamma \bar{\rho}^{b}_{m}} \frac{a_{i} e^{3\eta/2}}{H_{0}^{2}} w(k) \,, \\ v^{b}_{P_{\mathcal{H}}}(k) &= \frac{\gamma - 1}{\bar{\rho}^{b}} e^{-\eta/2} w(k) \,, \\ v^{\alpha\gamma}_{G}(k) &= -\frac{3\Omega^{\alpha}_{m,0}}{2k^{2} \bar{\rho}^{\alpha}} e^{\eta/2} \,. \end{split}$$

Matter Power Spectrum in Expanding Spacetime

Matter Power Spectrum (Not the Cosmological Model)

Outline

Motivation

Basics

Including Baryons in KFT Computing Power Spectra With RKFT

Model in Static Spacetime

Modelling Reionization Static Model With RKFT Static Analytic Toy Model

Model in Expanding Spacetime Expanding Model With RKFT 21cm Power Spectrum

Open Problems

$$\delta T_b(z) = T_b - T_{CMB} = 9 \,\mathrm{mK}(1-x)(1+\delta)(1+z)^{1/2} \, \frac{T_S - T_{CMB}}{T_S}$$

٠

Assume $T_S \approx T_{CMB}$:

$$\delta T_b(z) = 9 \,\mathrm{mK}(1-x)(1+\delta)(1+z)^{1/2}$$
.

Assume $T_S \approx T_{CMB}$:

$$\delta T_b(z) = 9 \,\mathrm{mK}(1-x)(1+\delta)(1+z)^{1/2}$$
.

Compute the power spectrum

$$\begin{split} \langle \delta T_b(1) \delta T_b(2) \rangle &= (9 \text{mK})^2 \frac{(1+z)}{\bar{\rho}^2} \langle (x_{HI} \, \rho)(1)(x_{HI} \, \rho)(2) \rangle \\ &= (9 \text{mK})^2 \frac{(1+z)}{\bar{\rho}^2} \left\{ \left[\frac{1}{2} + x_{T_0} \, T_0 \right]^2 \langle \rho(1) \rho(2) \rangle \right. \\ &\left. - 2 \left[\frac{1}{2} + x_{T_0} \, T_0 \right] \frac{2x_{T_0}}{5k_B} \langle \rho(1) h(2) \rangle + \left(\frac{2x_{T_0}}{5k_B} \right)^2 \langle h(1) h(2) \rangle \right\} \,. \end{split}$$

21cm Power Spectrum

$$\dot{\mathcal{H}}_j(t) = m \frac{\mathrm{d}}{\mathrm{d}t} \tilde{\mathcal{H}}\left(\vec{q}_j(t), t\right)$$

$$\begin{split} \dot{\mathcal{H}}_{j}(t) &= m \frac{\mathrm{d}}{\mathrm{d}t} \tilde{\mathcal{H}}\left(\vec{q}_{j}(t), t\right) \\ &= -\frac{m}{\rho_{m}(\vec{q}, t) a} (\gamma - 1) h(\vec{q}, t) \vec{\nabla}_{q} \cdot \vec{u}(\vec{q}, t) \bigg|_{\vec{q} = \vec{q}_{j}(t)} \end{split}$$

$$\begin{split} \dot{\mathcal{H}}_{j}(t) &= m \frac{\mathrm{d}}{\mathrm{d}t} \tilde{\mathcal{H}}\left(\vec{q}_{j}(t), t\right) \\ &= -\frac{m}{\rho_{m}(\vec{q}, t)a} (\gamma - 1)h(\vec{q}, t) \vec{\nabla}_{q} \cdot \vec{u}(\vec{q}, t) \Big|_{\vec{q} = \vec{q}_{j}(t)} \\ &= -\frac{m}{\rho_{m}(\vec{q}, t)a} (\gamma - 1)h(\vec{q}, t) \vec{\nabla}_{q} \cdot (\dot{a}\vec{q} + \dot{a}\vec{q})(\vec{q}, t) \Big|_{\vec{q} = \vec{q}_{j}(t)} \end{split}$$

$$\begin{split} \dot{\mathcal{H}}_{j}(t) &= m \frac{\mathrm{d}}{\mathrm{d}t} \tilde{\mathcal{H}}\left(\vec{q}_{j}(t), t\right) \\ &= -\frac{m}{\rho_{m}(\vec{q}, t)a} (\gamma - 1)h(\vec{q}, t) \vec{\nabla}_{q} \cdot \vec{u}(\vec{q}, t) \Big|_{\vec{q} = \vec{q}_{j}(t)} \\ &= -\frac{m}{\rho_{m}(\vec{q}, t)a} (\gamma - 1)h(\vec{q}, t) \vec{\nabla}_{q} \cdot (\dot{a}\vec{q} + a\dot{\vec{q}})(\vec{q}, t) \Big|_{\vec{q} = \vec{q}_{j}(t)} \\ &= -3\frac{m\dot{a}}{\rho_{m}(\vec{q}, t)a} (\gamma - 1)h(\vec{q}, t) - \frac{m}{\rho_{m}(\vec{q}, t)} (\gamma - 1)h(\vec{q}, t) \vec{\nabla}_{q} \cdot \dot{\vec{q}}(\vec{q}, t) \Big|_{\vec{q} = \vec{q}_{j}(t)} \end{split}$$

$$\begin{split} \dot{\mathcal{H}}_{j}(t) &= m \frac{\mathrm{d}}{\mathrm{d}t} \tilde{\mathcal{H}}\left(\vec{q}_{j}(t), t\right) \\ &= -\frac{m}{\rho_{m}(\vec{q}, t)a} (\gamma - 1)h(\vec{q}, t) \vec{\nabla}_{q} \cdot \vec{u}(\vec{q}, t) \Big|_{\vec{q} = \vec{q}_{j}(t)} \\ &= -\frac{m}{\rho_{m}(\vec{q}, t)a} (\gamma - 1)h(\vec{q}, t) \vec{\nabla}_{q} \cdot (\dot{a}\vec{q} + a\dot{\vec{q}})(\vec{q}, t) \Big|_{\vec{q} = \vec{q}_{j}(t)} \\ &= -3\frac{m\dot{a}}{\rho_{m}(\vec{q}, t)a} (\gamma - 1)h(\vec{q}, t) - \frac{m}{\rho_{m}(\vec{q}, t)} (\gamma - 1)h(\vec{q}, t) \vec{\nabla}_{q} \cdot \dot{\vec{q}}(\vec{q}, t) \Big|_{\vec{q} = \vec{q}_{j}(t)} \\ &= -3(\gamma - 1)\frac{\dot{a}}{a}\mathcal{H}_{j} - \frac{m}{\rho_{m}}(\gamma - 1)\sum_{k=1}^{N}\mathcal{H}_{k}(t)(\dot{\vec{q}}_{k} - \dot{\vec{q}}_{j})\vec{\nabla}_{q_{j}}w\left(|\vec{q}_{j}(t) - \vec{q}_{k}(t)|\right) \end{split}$$

$$\begin{split} \dot{\mathcal{H}}_{j}(t) &= m \frac{\mathrm{d}}{\mathrm{d}t} \tilde{\mathcal{H}}\left(\vec{q}_{j}(t), t\right) \\ &= -\frac{m}{\rho_{m}(\vec{q}, t)a} (\gamma - 1)h(\vec{q}, t) \vec{\nabla}_{q} \cdot \vec{u}(\vec{q}, t) \Big|_{\vec{q} = \vec{q}_{j}(t)} \\ &= -\frac{m}{\rho_{m}(\vec{q}, t)a} (\gamma - 1)h(\vec{q}, t) \vec{\nabla}_{q} \cdot (\dot{a}\vec{q} + a\dot{\vec{q}})(\vec{q}, t) \Big|_{\vec{q} = \vec{q}_{j}(t)} \\ &= -3\frac{m\dot{a}}{\rho_{m}(\vec{q}, t)a} (\gamma - 1)h(\vec{q}, t) - \frac{m}{\rho_{m}(\vec{q}, t)} (\gamma - 1)h(\vec{q}, t) \vec{\nabla}_{q} \cdot \dot{\vec{q}}(\vec{q}, t) \Big|_{\vec{q} = \vec{q}_{j}(t)} \\ &= -3(\gamma - 1)\frac{\dot{a}}{a}\mathcal{H}_{j} - \frac{m}{\rho_{m}}(\gamma - 1)\sum_{k=1}^{N}\mathcal{H}_{k}(t)(\dot{\vec{q}}_{k} - \dot{\vec{q}}_{j})\vec{\nabla}_{q_{j}}w\left(|\vec{q}_{j}(t) - \vec{q}_{k}(t)|\right) \end{split}$$

This results in the enthalpy propagator

$$g_{\mathcal{H}\mathcal{H}}(\eta_1,\eta_2)=e^{3(\gamma-1)(\eta_2-\eta_1)}=(a_2/a_1)^2\,.$$

Computing the power spectrum with the enthalpy propagator $g_{\mathcal{HH}}(\eta_1, \eta_2) = (a_2/a_1)^2$ and without heating:

The Problem With the Mean Ionisation Fraction

Compute the mean ionisation fraction via

$$\langle x
angle = rac{1}{2} - x_{\mathcal{T}_0} \left[\mathcal{T}_0 - rac{2}{5Nk_B} \langle \mathcal{H}
angle
ight] \,.$$

The Problem With the Mean Ionisation Fraction

Compute the mean ionisation fraction via

$$\langle x
angle = rac{1}{2} - x_{\mathcal{T}_0} \left[\mathcal{T}_0 - rac{2}{5Nk_B} \langle \mathcal{H}
angle
ight] \, .$$

Therefore we need to compute

$$\langle h
angle = \mathcal{G}_{f,1}(1) \cong \ ^{_1} \longrightarrow \cong \sum_{a=b,d} \sum_{lpha=0,1,2} \int \mathrm{d}2 \,\Delta_{f_1^b eta_lpha}^a(1,2)
u_{eta_lpha}^a(-2) \,.$$

The Problem With the Mean Ionisation Fraction

Compute the mean ionisation fraction via

$$\langle x
angle = rac{1}{2} - x_{T_0} \left[T_0 - rac{2}{5Nk_B} \langle \mathcal{H}
angle
ight] \, .$$

Therefore we need to compute

$$\langle h \rangle = G_{f,1}(1) \cong {}^{\scriptscriptstyle 1} \longrightarrow \cong \sum_{a=b,d} \sum_{\alpha=0,1,2} \int \mathrm{d} 2 \, \Delta_{f_1^b \beta_\alpha^a}(1,2) \nu_{\beta_\alpha^a}(-2) \, .$$

Figure: mean ionisation fraction

 We were able to include photoionization into RKFT.

- We were able to include photoionization into RKFT.
- Computed power spectra and studied dependencies in static and expanding spacetime.

- We were able to include photoionization into RKFT.
- Computed power spectra and studied dependencies in static and expanding spacetime.
- Behaviour in static spacetime confirmed by toy model based on Eulerian perturbation theory

- We were able to include photoionization into RKFT.
- Computed power spectra and studied dependencies in static and expanding spacetime.
- Behaviour in static spacetime confirmed by toy model based on Eulerian perturbation theory
- Advantages of this approach:
 - Simple and fast computation of power spectra Able to compute power spectra of ionised hydrogen (or differential brightness temperature power spectra)

- We were able to include photoionization into RKFT.
- Computed power spectra and studied dependencies in static and expanding spacetime.
- Behaviour in static spacetime confirmed by toy model based on Eulerian perturbation theory
- Advantages of this approach:
 - Simple and fast computation of power spectra
 - Able to compute power spectra of
 - ionised hydrogen (or differential
 - brightness temperature power spectra)
- \rightarrow The epoch of reionization can be modelled using RKFT and observables like the power spectra of ionised hydrogen can be easily calculated!

